Convergence of Minimum Norm Elements of Projections and Intersections of Nested Affine Spaces in Hilbert Space
نویسندگان
چکیده
We consider a Hilbert space, an orthogonal projection onto a closed subspace and a sequence of downwardly directed affine spaces. We give sufficient conditions for the projection of the intersection of the affine spaces into the closed subspace to be equal to the intersection of their projections. Under a closure assumption, one such (necessary and) sufficient condition is that summation and intersection commute between the orthogonal complement of the closed subspace, and the subspaces corresponding to the affine spaces. Another sufficient condition is that the cosines of the angles between the orthogonal complement of the closed subspace, and the subspaces corresponding to the affine spaces, be bounded away from one. Our results are then applied to a general infinite horizon, positive semi-definite, linear quadratic, mathematical programming problem. Specifically, under suitable conditions, we show that optimal solutions exist and, modulo those feasible solutions with zero objective value, they are limits of optimal solutions to finite dimensional truncations of the original problem. ∗This author was supported in part by the National Science Foundation under Grant DMI-0322114.
منابع مشابه
SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS
In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملA Comparative Study of Fuzzy Inner Product Spaces
In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کامل